# SPDX-FileCopyrightText: 2021-2022 Constantine Evans <const@costi.eu>
#
# SPDX-License-Identifier: AGPL-3.0-only
from __future__ import annotations
import re
from abc import ABCMeta, abstractmethod
from dataclasses import dataclass
from datetime import timedelta
from typing import Any, ClassVar, Literal, Sequence
import attrs
import pandas as pd
ScopeType = Literal["all", "limited"]
[docs]class Processor(metaclass=ABCMeta):
[docs] @abstractmethod
def process_scoped(
self, data: pd.DataFrame, scope: ScopeType
) -> pd.DataFrame: # pragma: no cover
"""
Filter the data, and return it (possibly not a copy), *if scope is the
minimum necessary scope for this normalization type*. Otherwise, just
return the same data.
This is useful for writing scope-agnostic code, provided that you call this for
every scope before using the data.
The values for scope are:
- "all": the entire welldata array.
- "limited": all time points, but limited to the filter sets and samples being plotted.
"""
...
[docs] @abstractmethod
def process(self, data: pd.DataFrame) -> pd.DataFrame: # pragma: no cover
...
[docs] @abstractmethod
def ylabel(self, previous_label: str | None = None) -> str: # pragma: no cover
...
[docs]class NormRaw(Processor):
"""
A Processor that takes no arguments, and simply passes through raw
fluorescence values.
"""
[docs] def process_scoped(self, data: pd.DataFrame, scope: ScopeType) -> pd.DataFrame:
return data
[docs] def process(self, data: pd.DataFrame) -> pd.DataFrame: # pragma: no cover
return data
[docs] def ylabel(self, previous_label: str | None = None) -> str:
if previous_label is None:
return "fluorescence (AU)"
return re.sub(r"\(([^)]+)\)", r"(\1, AU)", previous_label)
[docs]@attrs.define()
class SmoothWindowMean(Processor):
"""
A Processor that smooths fluorescence readings using Pandas' Rolling,
and mean.
"""
window: int
min_periods: int | None = None
center: bool = False
win_type: str | None = None
closed: str | None = None
scope: ClassVar[ScopeType] = "limited"
def __attrs_post_init__(self):
pass
[docs] def process_scoped(self, data: pd.DataFrame, scope: ScopeType) -> pd.DataFrame:
if scope == self.scope:
return self.process(data)
else:
return data
[docs] def process(self, data: pd.DataFrame) -> pd.DataFrame:
return data.rolling(
window=self.window,
min_periods=self.min_periods,
center=self.center,
win_type=self.win_type,
closed=self.closed,
).mean()
[docs] def ylabel(self, previous_label: str | None = None) -> str:
if previous_label is None:
return f"fluorescence (window mean {self.window})"
return re.sub(
r"\(([^)]+)\)", rf"(\1, window mean {self.window})", previous_label
)
[docs]@attrs.define()
class SmoothEMWMean(Processor):
"""
A Processor that smooths fluorescence readings using Pandas' Exponential Moving Window
(ewm / exponentially weighted moving-average).
"""
com: float | None = None
span: float | None = None
halflife: float | str | timedelta | None = None
alpha: float | None = None
min_periods: int = 0
adjust: bool = True
ignore_na: bool = False
scope: ClassVar[ScopeType] = "limited"
def __attrs_post_init__(self):
pass
[docs] def ylabel(self, previous_label: str | None = None) -> str:
if previous_label is None:
return f"fluorescence (EMW-smoothed)"
return re.sub(r"\(([^)]+)\)", rf"(\1, EMW-smoothed)", previous_label)
[docs] def process_scoped(self, data: pd.DataFrame, scope: ScopeType) -> pd.DataFrame:
if scope == self.scope:
return self.process(data)
else:
return data
[docs] def process(self, data: pd.DataFrame) -> pd.DataFrame:
return data.ewm(
com=self.com,
span=self.span,
halflife=self.halflife,
alpha=self.alpha,
min_periods=self.min_periods,
adjust=self.adjust,
ignore_na=self.ignore_na,
).mean()
[docs]@dataclass(init=False)
class NormToMeanPerWell(Processor):
"""
A Processor that divides the fluorescence reading for each (filterset, well) pair
by the mean value of that pair within a particular selection of data.
The easiest way to use this is to give a particular stage (all data in that
stage will be used), or a stage and set of cycles (those cycles in that stage
will be used). For example:
- To normalize to the mean stage 8 values, use `NormToMeanPerWell(stage=8)`.
- To normalize to the first 5 cycles of stage 2, use
NormToMeanPerWell(stage=2, cycle=slice(1, 6)).
`selection` allows arbitrary Pandas indexing (without the filter_set level
of the MultiIndex) for unusual cases.
"""
selection: Any
scope: ClassVar[ScopeType] = "limited"
def __init__(
self,
stage: int | slice | Sequence[int] | None = None,
step: int | slice | Sequence[int] | None = None,
cycle: int | slice | Sequence[int] | None = None,
*,
selection: Any | None = None,
):
if selection is not None:
if stage is not None:
raise ValueError("Selection already set, can't specify stage.")
if step is not None:
raise ValueError("Selection already set, can't specify step.")
if cycle is not None:
raise ValueError("Selection already set, can't specify cycle.")
self.selection = selection
if stage is None:
stage = slice(None)
elif isinstance(stage, int):
stage = [stage]
if step is None:
step = slice(None)
elif isinstance(step, int):
step = [step]
if cycle is None:
cycle = slice(None)
elif isinstance(cycle, int):
cycle = [cycle]
self.selection = (stage, step, cycle)
[docs] def process_scoped(self, data: pd.DataFrame, scope: ScopeType) -> pd.DataFrame:
if scope == self.scope:
return self.process(data)
else:
return data
[docs] def process(self, data: pd.DataFrame) -> pd.DataFrame:
normdata = data.copy()
means = (
data.loc[(slice(None), *self.selection), (slice(None), "fl")]
.groupby("filter_set")
.mean()
)
normdata.loc[:, (slice(None), "fl")] /= means
return normdata
[docs] def ylabel(self, previous_label: str | None = None) -> str:
if previous_label is None:
return f"fluorescence (norm. to mean)"
return re.sub(r"\(([^)]+)\)", rf"(\1, norm. to mean)", previous_label)
[docs]@dataclass(init=False)
class SubtractByMeanPerWell(Processor):
"""
A Processor that subtracts the fluorescence reading for each (filterset, well) pair
by the mean value of that pair within a particular selection of data.
The easiest way to use this is to give a particular stage (all data in that
stage will be used), or a stage and set of cycles (those cycles in that stage
will be used). For example:
- To subtract the mean stage 8 values, use `NormToMeanPerWell(stage=8)`.
- To subtract the mean of the first 5 cycles of stage 2, use
NormToMeanPerWell(stage=2, cycle=slice(1, 6)).
`selection` allows arbitrary Pandas indexing (without the filter_set level
of the MultiIndex) for unusual cases.
"""
selection: Any
scope: ClassVar[ScopeType] = "limited"
def __init__(
self,
stage: int | slice | Sequence[int] | None = None,
step: int | slice | Sequence[int] | None = None,
cycle: int | slice | Sequence[int] | None = None,
*,
selection: Any | None = None,
):
if selection is not None:
if stage is not None:
raise ValueError("Selection already set, can't specify stage.")
if step is not None:
raise ValueError("Selection already set, can't specify step.")
if cycle is not None:
raise ValueError("Selection already set, can't specify cycle.")
self.selection = selection
if stage is None:
stage = slice(None)
elif isinstance(stage, int):
stage = [stage]
if step is None:
step = slice(None)
elif isinstance(step, int):
step = [step]
if cycle is None:
cycle = slice(None)
elif isinstance(cycle, int):
cycle = [cycle]
self.selection = (stage, step, cycle)
[docs] def process_scoped(self, data: pd.DataFrame, scope: ScopeType) -> pd.DataFrame:
if scope == self.scope:
return self.process(data)
else:
return data
[docs] def process(self, data: pd.DataFrame) -> pd.DataFrame:
normdata = data.copy()
means = (
data.loc[(slice(None), *self.selection), (slice(None), "fl")]
.groupby("filter_set")
.mean()
)
normdata.loc[:, (slice(None), "fl")] -= means
return normdata
[docs] def ylabel(self, previous_label: str | None = None) -> str:
if previous_label is None:
return f"fluorescence (subtr. by mean)"
return re.sub(r"\(([^)]+)\)", rf"(\1, subtr. by mean)", previous_label)
[docs]@dataclass
class NormToMaxPerWell(Processor):
"""
A Processor that divides the fluorescence reading for each (filterset, well) pair
by the max value of that pair within a particular selection of data.
The easiest way to use this is to give a particular stage (all data in that
stage will be used), or a stage and set of cycles (those cycles in that stage
will be used). For example:
- To normalize to the mean stage 8 values, use `NormToMeanPerWell(stage=8)`.
- To normalize to the first 5 cycles of stage 2, use
NormToMeanPerWell(stage=2, cycle=slice(1, 6)).
`selection` allows arbitrary Pandas indexing (without the filter_set level
of the MultiIndex) for unusual cases.
"""
selection: Any
scope: ClassVar[ScopeType] = "limited"
def __init__(
self,
stage: int | slice | Sequence[int] | None = None,
step: int | slice | Sequence[int] | None = None,
cycle: int | slice | Sequence[int] | None = None,
*,
selection: Any | None = None,
):
if selection is not None:
if stage is not None:
raise ValueError("Selection already set, can't specify stage.")
if step is not None:
raise ValueError("Selection already set, can't specify step.")
if cycle is not None:
raise ValueError("Selection already set, can't specify cycle.")
self.selection = selection
if stage is None:
stage = slice(None)
elif isinstance(stage, int):
stage = [stage]
if step is None:
step = slice(None)
elif isinstance(step, int):
step = [step]
if cycle is None:
cycle = slice(None)
elif isinstance(cycle, int):
cycle = [cycle]
self.selection = (stage, step, cycle)
[docs] def process_scoped(self, data: pd.DataFrame, scope: ScopeType) -> pd.DataFrame:
if scope == self.scope:
return self.process(data)
else:
return data
[docs] def process(self, data: pd.DataFrame) -> pd.DataFrame:
normdata = data.copy()
means = (
data.loc[(slice(None), *self.selection), (slice(None), "fl")]
.groupby("filter_set")
.max()
)
normdata.loc[:, (slice(None), "fl")] /= means
return normdata
[docs] def ylabel(self, previous_label: str | None = None) -> str:
if previous_label is None:
return f"fluorescence (norm. to max)"
return re.sub(r"\(([^)]+)\)", rf"(\1, norm. to max)", previous_label)